Paper 1MA1: 2H	XX71 *				Neder	
Question	Working	Answer			Notes	
1		96	P1	a strategy to start to	o solve the problem eg 18	$\div (7-4) (=6)$
			P1	for completing the	process of solution eg "6'	$' \times (4 + 5 + 7)$
			A1	cao		
2		20.9	M1	correct recall of ap	propriate formula eg sin :	$x = \frac{5}{14}$
			A1	for 20.9(248)		
3 (a)		4 <i>n</i> +2 M		start to deduce nth	term from information give	ven eg $4n+k$ where $k\neq 2$
			A1	cao		
(b)		No (supported)	M1	starts method that coperations	could lead to a deduction	eg uses inverse
			C1	for a convincing ar integer	gument eg 34 is 107 so N	O; (108–5)÷3 is not an
4		conclusion	P1	30 ÷ 70 (=0.428)	26 ÷ 60 (=0.4333)	30 ÷ 26 (=1.153)
		(supported)	P1	60 × "0.428…"	70 ×"0.4333…"	60× "1.153…"
			C1	for conclusion link	 ed to 25.7 mins, 30.3 mile	es or 69.2 mph

Paper 1MA1: 2H			
Question	Working	Answer	Notes
5 (a)		$22 \le f < 24$	B1
(b)		21.9	M1 $x \times f$ using midpoints
			M1 (dep on previous mark) " $x \times f$ " ÷ 40
			A1 accept 22 if working seen
6		9.54	P1 $10^2 - 5^2$ (=75)
			P1 "75" + 4^2 (=91)
			P1 $\sqrt{(10^2 - 5^2 + 4^2)}$
			A1 9.53 – 9.54
7 (a)		(1, 4)	B1
(b)		-0.4, 2.4	B1
(c)		3.75	B1 accept 3.7 – 3.8
8		6:2:1	M1 for correct interpretation of any one statement eg. 3 : 1; 1 : 0.5
			A1 accept any equivalent ratio eg. 3 : 1 : 0.5

Paper 1MA	1: 2H		
Question	Working	Answer	Notes
9		203	P1 translate into algebra for rectangle: $4x+4x+3x+4+3x+4$ (=14x+8) or for trapezium: $5x+5x+x-3+7x-3$ (=18x-6)
			P1 equating: eg $18x-6=14x+8$ (4x=14)
			A1 solving for <i>x</i> : $x=14/4 = 3.5$ oe
			P1 process to find area: " 3.5 " × $3+4$ (ft) or " 3.5 " × 4 ft
			A1 cao
10 (a)		1.8%	P1 for start to process eg. 2000×1.025 (=2050)
			P1 for process to use all given information eg "2050" × $m^2 = 2124.46$
			or "2050"× $\left(1 + \frac{x}{100}\right)^2 = 2124.46$
			P1 for process to find their unknown eg $m = \sqrt{\frac{2124.46}{2050}} (= 1.01799)$
			A1 for 1.79% – 1.8 %
(b)		200	M1 225 ÷ 1.125 oe
			A1

Paper 1MA	1: 2H			
Question	Working	Answer		Notes
11		29°	angle <i>OTP</i> =	90°, quoted or shown on the diagram
				leads to $180 - (90 + 32)$ or 58 shown at <i>TOP</i> OR that shown at <i>SOT</i>
			1 complete me shown at <i>TS</i> .	ethod leading to "58"÷2 or $(180 - "122") \div 2$ or 29 P
			method eg an in a <u>triangle</u> <u>angles</u> and b	29° clearly indicated and appropriate reasons linked to ngle between <u>radius</u> and <u>tangent</u> = 90° and sum of <u>angles</u> = 180° ; <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>int opp</u> ase <u>angles</u> of an <u>isos</u> triangle are <u>equal</u> or <u>angle</u> at <u>centre</u> t <u>circumference</u> or <u>ext angle</u> of a triangle <u>equal</u> to sum of <u>equal</u> to sum of <u>est</u>
12 (a)		0.4,0.6	l correctly pla	cing probs for light A eg 0.4, 0.6
		0.3,0.7,0.8,0.2	l correctly pla	cing probs for light B eg 0.3, 0.7, 0.8, 0.2
(b)		B with correct	(ft) eg $0.4 \times$	0.3 or 0.6 × 0.8 or 1–(0.28+0.12)
		probabilities	both sets of	correct probability calculations
			Correct inter	pretation of results with correct comparable results
13		20	1 Establishing	method linked to proportion eg $d=k+c$ or $25=k+280$
			1 (dep) substit	ution eg $d = 7000 \div 350$ or $25 \times 280 \div 350$ oe
			l cao	

Paper 1MA	A1: 2H		
Question	Working	Answer	Notes
14	$(4n^{2}+2n+2n+1) - (2n+1)= 4n^{2}+4n+1-2n-1$	proof (supported)	M1 for 3 out of 4 terms correct in the expansion of $(2n + 1)^2$ or $(2n + 1) \{(2n + 1) - 1\}$
	$= 4n^2 + 2n$ $= 2n(2n+1)$		P1 for $4n^2 + 2n$ or equivalent expression in factorised form
			C1 for convincing statement using $2n(2n + 1)$ or $2(2n^2 + n)$ or $4n^2 + 2n$ to prove the result
15		$\frac{23}{90}$	M1 For a fully complete method as far as finding two correct decimals that, when subtracted, give a terminating decimal (or integer) and showing intention to subtract
			eg $x = 0.25$ so $10x = 2.55$ then $9x = 2.3$ leading to
			A1 correct working to conclusion
16		$\frac{2x+1}{3x+5}$	M1 for $(3x \pm 5)(2x \pm 1)$ or $(2x + 1)(2x - 1)$
		5x + 5	M1 $\frac{1}{(3x\pm5)(2x\pm1)} \times (2x+1)(2x-1)$
			A1
17		4.89	M1 $\frac{40}{360} \times 2 \times \pi \times 7$ oe
			A1 4.8 – 4.9

Paper 1MA1: 2H			
Question	Working	Answer	Notes
18		0.229 With Explanation	 B1 Finding bound of s: 3.465 or 3.475 or 3.474999 or Finding bound of t: 8.1315 or 8.1325 or 8.132499 P1 Use of "upper bound" and "lower bound" in equation
			P1 Process of choosing correct bounds eg $\frac{\sqrt{3.475}}{8.1315}$ or $\frac{\sqrt{3.465}}{8.1325}$
			A1 For 0.2292 and 0.2288 from correct working
			C1 For 0.229 from 0.2292 and 0.2288 since both LB and UB round to 0.229
19 (a)		Sketch	P1 Parabola passes through all three of the points (0, 4), (2,0), (4, 4)
(b)		Sketch	P1 Parabola passes through all three of the points $(-4, -1), (-2, 2), (0, -1)$
20		x=0, y=5 x=-4, y=-3	M1 Initial process of substitution eg $x^2 + (2x + 5)^2$ (=25)
		x- 4, y- 3	M1 for expanding and simplifying eg $x^2 + 4x^2 + 10x + 10x + 25$ (=25)
			M1 Use of factorisation or correct substitution into quadratic formula or completing the square to solve an equation of the form $ax^2 + bx + c = 0$, $a \neq 0$
			A1 correct values of x or y
			C1 $x = 0, x = -4, y = 5, y = -3$ correctly matched x and y values

142

Paper 1MA	1: 2H		
Question	Working	Answer	Notes
21 (a)		130	P1 start to process eg draw a labelled triangle or use of
			sine rule $\frac{\sin Q}{8.7} = \frac{\sin 32}{5.2}$
			P1 process to find of $Q \ eg \ Q = \sin^{-1} \left[\frac{\sin 32}{5.2} \times 8.7 \right]$
			P1 process to find area of triangle <i>PRQ</i> .
			A1 22.5 – 22.6
(b)			C1 angle PRQ is obtuse so need to find area of two triangles.
22		1361	P1 process using similar triangles to find base of small cone eg. 4 cm used as diameter or 2 cm used as radius
			P1 process to find volume of one cone
			P1 complete process to find volume of frustum
			P1 complete process to find mass or 1360 – 1362
			A1 1361 or 1360 or 1400