Paper 1MA1: 2H			
Question	Working	Answer	Notes
1		96	P1 a strategy to start to solve the problem eg $18 \div(7-4)(=6)$ P1 for completing the process of solution eg " 6 " $\times(4+5+7)$ A1 cao
2		20.9	M1 \quad correct recall of appropriate formula eg $\sin x=\frac{5}{14}$ A1 for 20.9(248...)
3 (a) (b)		$4 n+2$ No (supported)	M start to deduce nth term from information given eg $4 n+k$ where $k \neq 2$ A1 cao M1 starts method that could lead to a deduction eg uses inverse operations C1 for a convincing argument eg 34 is 107 so NO; $(108-5) \div 3$ is not an integer
4		conclusion (supported)	P1 $30 \div 70(=0.428)$ $26 \div 60(=0.4333 \ldots)$ $30 \div 26(=1.153 \ldots)$ P1 $60 \times " 0.428 \ldots "$ $70 \times " 0.4333 \ldots "$ $60 \times$ " $1.153 \ldots "$ C1 for conclusion linked to 25.7 mins, 30.3 miles or 69.2 mph

Paper 1MA1: 2 H			
Question	Working	Answer	Notes
5 (a) (b)		$\begin{gathered} 22 \leq f<24 \\ 21.9 \end{gathered}$	B1 M1 $\quad x \times f$ using midpoints M1 (dep on previous mark) " $x \times f$ " $\div 40$ A1 accept 22 if working seen
6		9.54	P1 $10^{2}-5^{2}(=75)$ P1 $" 75 "+4^{2}(=91)$ P1 $\sqrt{ }\left(10^{2}-5^{2}+4^{2}\right)$ A1 $9.53-9.54$
7 (a) (b) (c)		$\begin{gathered} (1,4) \\ -0.4,2.4 \\ 3.75 \end{gathered}$	B1 B1 B1 accept $3.7-3.8$
8		6:2:1	M1 \quad for correct interpretation of any one statement eg. $3: 1 ; 1: 0.5$ A1 \quad accept any equivalent ratio eg. $3: 1: 0.5$

Paper 1MA1: 2H		Answer		
Question	Working		Notes	
11		29°	C1	angle $O T P=90^{\circ}$, quoted or shown on the diagram
			M1	method that leads to $180-(90+32)$ or 58 shown at TOP OR that leads to 122 shown at $S O T$
			M1	complete method leading to " 58 " $\div 2$ or $(180-" 122 ") \div 2$ or 29 shown at TSP
			C1	for angle of 29° clearly indicated and appropriate reasons linked to method eg angle between radius and tangent $=\underline{90^{\circ}}$ and sum of angles in a triangle $=180^{\circ}$; ext angle of a triangle equal to sum of int opp angles and base angles of an isos triangle are equal or angle at centre $=\underline{2 x}$ angle at circumference or ext angle of a triangle equal to sum of int opp angles
12 (a)	\square	0.4,0.6	B	correctly placing probs for light A eg 0.4, 0.6
		0.3,0.7,0.8,0.2	B1	correctly placing probs for light B eg $0.3,0.7,0.8,0.2$
		B with correct probabilities	P1	(ft) eg 0.4×0.3 or 0.6×0.8 or $1-(0.28+0.12)$
			P1	both sets of correct probability calculations
			C1	Correct interpretation of results with correct comparable results
13		20	M1	Establishing method linked to proportion eg $d=k \div c$ or $25=k \div 280$
			M1	(dep) substitution eg $d=7000 \div 350$ or $25 \times 280 \div 350$ oe
			A1	cao

Paper 1M	2H		
Question	Working	Answer	Notes
14	$\begin{aligned} & \left(4 n^{2}+2 n+2 n+1\right) \\ & \quad-(2 n+1)= \\ & 4 n^{2}+4 n+1-2 n-1 \\ & =4 n^{2}+2 n \\ & =2 n(2 n+1) \end{aligned}$	proof (supported)	M1 for 3 out of 4 terms correct in the expansion of $(2 n+1)^{2}$ or $(2 n+1)\{(2 n+1)-1\}$ P1 for $4 n^{2}+2 n$ or equivalent expression in factorised form C1 for convincing statement using $2 n(2 n+1)$ or $2\left(2 n^{2}+n\right)$ or $4 n^{2}+2 n$ to prove the result
15		$\frac{23}{90}$	M1 For a fully complete method as far as finding two correct decimals that, when subtracted, give a terminating decimal (or integer) and showing intention to subtract eg $x=0.2 \dot{5}$ so $10 x=2.5 \dot{5}$ then $9 x=2.3$ leading to \ldots A1 correct working to conclusion
16		$\frac{2 x+1}{3 x+5}$	M1 for $(3 x \pm 5)(2 x \pm 1)$ or $(2 x+1)(2 x-1)$ M1 $\frac{1}{(3 x \pm 5)(2 x \pm 1)} \times(2 x+1)(2 x-1)$ A1
17		4.89	$\begin{aligned} & \text { M1 } \frac{40}{360} \times 2 \times \pi \times 7 \text { oe } \\ & \text { A1 } 4.8-4.9 \end{aligned}$

Paper 1MA1: 2H		Answer	Notes
Question	Working		
$21 \quad \text { (a) }$		130	P1 start to process eg draw a labelled triangle or use of sine rule $\frac{\sin Q}{8.7}=\frac{\sin 32}{5.2}$
			P1 process to find of Q eg $Q=\sin ^{-1}\left[\frac{\sin 32}{5.2} \times 8.7\right]$
			P1 process to find area of triangle $P R Q$.
			A1 22.5-22.6
(b)			C1 angle $P R Q$ is obtuse so need to find area of two triangles.
22		1361	P1 process using similar triangles to find base of small cone eg. 4 cm used as diameter or 2 cm used as radius
			P1 process to find volume of one cone
			P1 complete process to find volume of frustum P1 complete process to find mass or 1360-1362
			A1 1361 or 1360 or 1400

